
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 11: More Monads!
o Review: Ok Monad, an improved Maybe Monad
o The List Monad (a.k.a. "Map and Flatten")
o List Comprehensions

Next time (after break): The State monad

Let's review the last lecture by creating an improved version of the Maybe
Monad, called the Ok Monad:

A review of the code (posted on the web as MonadLectureCode3.hs) is better
than Powerpoint for this one....

The Ok Monad

Another very useful monad is the List Monad, which is defined in the Prelude.
The key to any monad is the definition of bind, so let's look at it right away
and see what it does:

instance Monad [] where
-- return :: a -> [a]
return x = [x]

-- (>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)

g :: a -> [a]
g x = [x,x]

List Monad

[1, 2, 3]

[1,2,3] >>= g
=> concat (map g [1,2,3])

=> concat [(g 1),(g 2),(g 3)]

=> concat [[1,1],[2,2],[3,3]]
=> [1,1,2,2,3,3]

[[1,1] [2,2] [3,3]]

g g gmap

concat

[1,1,2,2,3,3]

instance Monad [] where
-- return :: a -> [a]
return x = [x]

-- (>>=) :: [a] -> (a -> [b]) -> [b]
xs >>= f = concat (map f xs)

h :: a -> [a]
h x = [x*10,x+2,x-1]

[1,2] >>= h
=> concat (map h [1,2])

=> concat [(h 1),(h 2)]

=> concat [[10,2,0],[20,4,1]]
=> [10,2,0,20,4,1]

List Monad

[1, 2]

[[10,3,0], [20,4,1]]

h hmap

concat

[10,3,0,20,4,1]

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

k :: a -> [a]
k x = [x,x,x]

[1,2] >>= k

map: ???

and flatten: ???

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

k :: a -> [a]
k x = [x,x,x]

[1,2] >>= k

map: [[1,1,1],[2,2,2]]

and flatten: [1,1,1,2,2,2]

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

m :: a -> [a]
m x = [x]

[1,2] >>= m

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

m :: a -> [a] -- m is the same as return
m x = [x]

[1,2] >>= m

map: [[1],[2]]

and flatten: [1,2] -- remember that return
-- is like the identity
-- for monads

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

z :: a -> [a]
z x = []

[1,2] >>= z

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

z :: a -> [a]
z x = []

[1,2] >>= z

map: [[],[]]

and flatten: []

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

n :: Integer -> [Integer]
n x = if even x then [x,x] else [x]

[1,2,3,4] >>= n

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

n :: Integer -> [Integer]
n x = if even x then [x,x] else [x]

[1,2,3,4] >>= n

map: [[1],[2,2],[3],[4,4]]

and flatten: [1,2,2,3,4,4]

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

q :: Integer -> [Integer]
q x = if even x then [x] else []

[1,2,3,4] >>= q

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

Quick Quiz: What is the result of the following?

r :: Integer -> [Integer]
r x = if even x then [x] else []

[1,2,3,4] >>= r

map: [[],[2],[],[4]]

and flatten: [2,4]

Ha! So you can use the List Monad to filter a list!

List Monad

Since what concat does is usually called
"flattening a list," my motto for
the List Monad is MAF = Map And Flatten!

The key to the List Monad, however, is to
understand what it does when you repeatedly
apply MAF:

g :: a -> [a]
g x = [x,x]

h :: a -> [a]
h x = [x*10,x+2,x-1]

[1,2] >>= h >>= g

List Monad

[[10,10],[3,3],[0,0],[20,20],[4,4],[1,1]]

map g

flatten

[10,10,3,3,0,0,20,20,4,4,1,1]

[1, 2]

[[10,3,0], [20,4,1]]

map h

flatten

[10,3,0,20,4,1]

Repeated applications of MAF

g :: a -> [a]
g x = [x,x]

h :: a -> [a]
h x = [x*10,x+2,x-1]

r :: Integer -> [Integer]
r x = if even x then [x] else []

[1,2] >>= h >>= g >>= r

List Monad

[10,10,3,3,0,0,20,20,4,4,1,1]

[1, 2]

[10,3,0,20,4,1]

map h and flatten

map g and flatten

[10,10,0,0,20,20,4,4]

map r and flatten

Repeated applications of MAF

g :: a -> [a]
g x = [x,x]

h :: a -> [a]
h x = [x*10,x+2,x-1]

r :: Integer -> [Integer]
r x = if even x then [x] else []

[1,2] >>= r >>= h >>= g

List Monad

[20,4,1]

[1,2]

[2]

map r and flatten

map h and flatten

[20,20,4,4,1,1]

map g and flatten

But of course we want to use do notation!

Let's translate this last example from bind
to do, by way of lambda expressions:

[1,2] >>= r >>= h >>= g

[1,2] >>= (\x -> r x >>= (\y -> h y >>= (\z -> g z)))

[1,2] >>= \x -> r x >>= \y -> h y >>= \z -> g z

[1,2] >>= \x ->
r x >>= \y ->
h y >>= \z ->
g z

do x <- [1,2]
y <- r x
z <- h y
g z

List Monad: Do Notation

But of course we want to use do notation!

Let's translate this last example from bind
to do, by way of lambda expressions:

[1,2] >>= r >>= h >>= g

[1,2] >>= (\x -> r x >>= (\y -> h y >>= (\z -> g z)))

do x <- [1,2]
y <- r x
z <- h y
g z

Q: What do the variables x, y, z represent in the computation?
What values do they take on?

List Monad: Do Notation

Let's translate this last example from bind
to do, by way of lambda expressions:

[1,2] >>= r >>= h >>= g

[1,2] >>= (\x -> r x >>= (\y -> h y >>= (\z -> g z)))

do x <- [1,2]
y <- r x
z <- h y
g z

Q: What do the variables x, y, z represent in the computation?
What values do they take on?

A: They "iterate" through the list as the function
is mapped onto the list:

List Monad: Do Notation

x

y

zx takes on the values 1, 2
y takes on the value 2
z takes on the values 20, 4, 1

Let's translate this last example from bind
to do, by way of lambda expressions:

[1,2] >>= r >>= h >>= g

[1,2] >>= (\x -> r x >>= (\y -> h y >>= (\z -> g z)))

In other words, it is essentially
the same as nested for loops in
Python:

do x <- [1,2]
y <- r x
z <- h y
g z

List Monad: Do Notation

result = []
for x in [1,2]:

for y in r(x):
for z in h(y):

result += g(z)

do x <- [1,2]
y <- r x
z <- h y
g z

Where the test implemented by function r would be better expressed as:

result = []
for x in [1,2]:

if (x % 2 == 0):
for z in h(x):

result += g(z)

List Monad: Do Notation

result = []
for x in [1,2]:

for y in r(x):
for z in h(y):

result += g(z)

do x <- [1,2]
y <- r x
z <- h y
g z

But rather than write this out with nested for loops in Python:

result = []
for x in [1,2]:

if (x % 2 == 0):
for z in h(x):

result += g(z)

you could do it with a list comprehension:

[w for w in g(z) for z in h(x) for x in [1,2] where (x % 2 == 0)]

Wouldn't it be nice if we could do the same thing in Haskell?

List Monad: Do Notation

Haskell provides list comprehensions as "syntactic sugar" for do expressions with the
List Monad:

Example:

do x <- [1,2]
x <- r x
y <- h x
z <- g y
return z

can be written as

[z | x <- [1,2], even x, y <- h x, z <- g y]

which you can read as: "For every x in [1,2], where x is even, for every y in (h x), and for
every z in (g y), collect together all the z's into a list," or write in standard mathematical
"set builder" notation as:

{ z | x ∈ [1,2] with & even ∧ y ∈ h(x) ∧ z ∈ g(y) }

List Monad: Do Notation and List Comprehensions

Summary: All three of these return the same list:

Main> lst1
[(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)]

Main> lst2
[(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)]

Main> lst3
[(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)]

But I know which one I prefer! Use List Comprehensions whenever possible!

List Monad

List comprehensions lead to all sorts of clever and elegant solutions to
programming problems:

factors :: Integer -> [Integer]
factors n = [x | x <- [1..n], n `mod` x == 0]

isPrime :: Integer -> Bool
isPrime n = factors n == [1,n]

primesLessThan :: Integer -> [Integer]
primesLessThan n = [x | x <- [2 .. n], isPrime x]

Main> primesLessThan 100
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,
71,73,79,83,89,97]

List Monad

To conclude, quicksort is a nice example of the power of list comprehensions:

qsort :: [Integer] -> [Integer]

qsort [] = []

qsort (x:xs) = (qsort small) ++ mid ++ (qsort large)
where small = [y | y <- xs, y < x]

mid = [y | y <- xs, y == x] ++ [x]
large = [y | y <- xs, y > x]

Main> qsort [2,5,2,23,7,5,3,-90,5,6,4,213,74,56,-8]

[-90,-8,2,2,3,4,5,5,5,6,7,23,56,74,213]

List Monad

